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We suggest a mathematical model o / a  steady-state thermal regime m electron-beam autocrucible melting. 

We carry out a numerical investigation of the dependence of the thermal parameters of  melting on the radius 

of circular scanning by the beam, the focal spot radius, and on the mean rate of mixing of the melt. The 
results of calculations are compared with experimental data. 

The essence of the process of electron-beam autocrucible melting (EBAM) consists of the melting out of 

an alloy from a lumpy or loose charge loaded into a smelting reservoir (autocrucible) with subsequent production 

of cast articles from the melt. In view of the recent tendency to increase the fraction of cast articles instead of those 

produced by deformation or machining, EBAM has found an increasingly important place in casting not only from 
refractory and chemically active metals, but also from nickel-, iron-, and cobalt-based alloys. 

In technological investigations of electron-beam melting and EBAM one usually makes use of a certain 

averaged (integral)temperature based on the mean rate of metal evaporation [1 ] or measured experimentally at 
fixed points on the heated surface, for example, at the center of the bath [2 ] or in the middle of its radius in a 

smelting vessel [3 ]. Such an approach, however, is suitable only when a uniform distribution of the electron-beam 

heating power is ensured, and it is a very rough approximation of the actual conditions of EBAM, which is usually 
carried out by focused electron beam scanning the heated surface. Certain features of the nonstationary technique 

of electron-beam heating were taken into account in [4 ] when constructing physical models of EBAM that aided 

in obtaining analytical dependences for the heating temperature of metals at the focal spot. However, only the use 

of mathematical models opens up possibilities for comprehensive consideration of the majority of factors that 
influence the process of melting and makes it possible to determine not only the temperature of the metal at any 

point in the autocrucible but also the volume of the autocrucible bath and the superheating of the melt in it [5-7 ]. 

A special feature of the EBAM process in the regime of holding at a prescribed constant power of heating 

is the attainment of a stationary distribution of the metal temperature in the autocrucible and stabilization of the 

volume of the liquid bath when the incoming energy of electron-beam heating is completely removed by a cooling 

system and by radiation and evaporation heat losses from the surface heated. 

Below we suggest a mathematical model of a stationary thermal regime in an autocrucible. The model is 

constructed using the approach of [5-7 ] based on heat conduction theory with the introduction, for the liquid phase, 

of the coefficient of effective heat conduction, which imitates forced convective heat transfer in a melt. Unlike [5-7 ], 
we take into account the scanning of the heated surface with an electron beam, dependence of the effective heat 

conduction coefficient on the liquid bath diameter at a prescribed, mean over the bath, speed of melt motion, as 

well as the temperature dependence of the heat conduction coefficient of the solid metal. 
We will describe the process considered and aspects of the mathematical model design. The autocrucible 

has a cylindrical shape, and its side (r = a) and bottom (z = O) surfaces are cooled with water (the cooling agent 

can be other than water); heating is provided by a focused electron beam that continually scans the surface of the 
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metal z - 1 according to a program (circle, spiral, intersecting lines, etc.). The  character  of the heat source in 

simulation of e lectron-beam heating is dictated by the magnitude of the accelerating voltage of the electron gun, 

which influences the depth of the penetration of electrons into the metal [8 ]. In the majority of cases, EBAM is 

carried out using electron guns of the axial type with an accelerating voltage of 4 0 - 5 0  kV 14 ]. Calculations by 
Shonland 's  formula [8 ] show that for metals at such accelerating voltages the electron penetration depth does not 

exceed I0 -5  m; therefore,  the relative er ror  arising in calculation of the metal temperature  by means  of the 

mathematical model involving a surface source of electron-beam heat ing (to whose consideration we will restrict  

ourselves in the present  work) does not exceed 0.01% compared to the case when volume heat absorption is taken 

into account. 

An important  factor that substantially influences the temperature  field and makes it possible to increase 

the discharge of liquid metal, simultaneously decreasing its heating, is electromagnetic mixing of the melt, which 

causes intense heat  exchange in the entire volume of the bath. We will use the very popular [4-91 hypothesis  that  

forced convective heat  t ransfer  in a melt can be simulated by means of the coefficient of effective heat  conduction 

2e, which exceeds k" times the coefficient of molecular heat conduction aL. To find the value of E, we shall use a 

formula obta ined  as a resul t  of exper imenta l  investigations of turbulent  heat  t ransfer  for  the case of forced 

convection [ 10 ]: 

k" = 1 0.45 (Pr Re) ~ for P r  Re _< 8600 ,  (1) 

[ 1.35 �9 10 -6  (Pr  Re) T M  for P r  Re > 8600 .  

Taking into account the fact that PrRe -- 2vr .CvL/~L ,  we see that the quanti ty E depends on the heat  capacity of 

a unit volume of liquid metal CVL, the ba th-mean speed of melt motion v, and the mean radius of the bath  r. .  We 

note that  in [4 ] the value E -  10 was used in calculations for ra ther  intense mixing of the metal. 

In the case of electron-beam scanning over a circle with its center  on the crucible axis r ffi 0 or simply of 

axisymmetric  heating by a fixed beam, assuming that the effective heat  conduction coefficient ;re ffi const in the 

entire region of the liquid phase, determinat ion of the developed temperature  field of the metal T(r ,  z) and of the 

melting isotherm (phase interface) r = R ( z )  requires solution of the following axisymmetr ic  s tat ionary problem of 

1 a (~ r aTI  a I~ OT) 
r Or (7") Or ) + -~z (T)  T z  : O, (r, z) E ff~s ; 

the Stefan type [5, 6 ]: 

1 O (r OT) + 02T 0 (r,z) ~_ ~)L ~ �9 

r Or ~ --~r ) Oz 2 ' 

aT  
d__T_Tor = 0 '  r = O ;  2 ( T ) - ~ + a l T = C t l T w ,  r = a ' ,  (2) 

OT OT 
2 (T)  T z  - a 2 T  = - ct2Tw ' z = O ; 2t (T)  -~z = q (r) - f (T)  ' z =  l;  

T = Tm,  r = R (z) ; 2e ~ n = 2 (T)  ~ n 
r=R(z)-O r=R(z)+O 

Here  •sUf2 L = {(r, z) : 0 < r < a; 0 < z </}; •s = {(r, z) : T(r ,  z) < Tin}; S~ L = {(r, z) : T(r ,  z) > Tin} are the 

regions of the solid and liquid phases, respectively; the linear boundary  conditions at r = a and z = 0 describe 

convective heat removal from the cooled surfaces of the crucible with the heat t ransfer  coefficients a l  and a2, and 

the nonlinear  boundary  condition at z ffi l is the absorption of the electron-beam energy of densi ty q(r) and heat  

losses due  to radiat ion and  evaporation from the heated surface, where I ( T )  = eaT  4 + rl(T - Tm)Qev(T). T h e  last 

conditions in system (2) express the equality of the temperature at the phase interface r = R(z )  to the melting 

temperature  T m and the equality of heat fluxes from the liquid and solid phases in a s teady state of the system. 
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We will represent the function Qev(T), which denotes the evaporation heat flux density, in the form Qev(T) 
= Cl exp ( - c 2 / T ) ,  where the constants cl and c2 can be found both from the data of experimental investigations 

and using the Clapeyron-elaus ius  law written for a thin gas layer adjoining the evaporation surface [11, 12 ]. 
Approximate solution of problem (2) by the method of finite differences is complicated, since the position 

of the phase interface and the value of the coefficient he are unknown. At the same time, the use of a time-dependent 
technique [13] requires solution of the corresponding nonstationary Stefan problem, which is extremely time- 
consuming. Therefore, we will reduce problem (2) to the equivalent nonlinear integral equation of Hammerstein 
[5, 6 ]. For this purpose, we shall use the Kirchhoff transformation 

r - r  w 

~ =  f A ( s ) a s  
0 

and also approximate the dependence of the thermal conductivity coefficient on temperature by a piecewise 
continuous function: 

J . (T)=, I . i ,  Ti_I  <_ T < Ti , i = l ,  K (TK = Tm , To = Tw) ; ~ . ( T ) - - - k , ~ L ,  T > T m . 

Excluding T(r, z) from Eq. (2), we obtain a simpler boundary-value problem for the new unknown function 
~,(r, z): 

r + = 0 ,  O < r < a ,  O < z < l ;  - ~ + h l ~ P = O ,  
r Or Oz Or 

r = a ,  

r  0 ,  r = 0 ;  0~p o~ Or = dz -- h 2 ~ p = O '  z = O ;  Oz = q ( r ) - f ( T O p ) ) '  z = l  

(3) 

and the condition for determining the phase interface r -- R (z): 

(n (0 ,  0 = ~ (r~ - % )  + 
K - I  
X )ti (Ti -- T i - l )  + )tK(Tm -- TK-I)"  (4) 
i=2 

Using the corresponding Green's function G(p, ~; r, z), we reduce the solution of boundary-value problem 
(3) to a nonlinear integral equation of the Hammerstein type for the function ~o(r) = ~p(r, /) [5]. In order to find 
its approximate solution, we approximate ~o (r) by a piecewise continuous function, having denoted the mean-integral 

value of ~o(r) by ~o i over the interval (r i -  l, ri), where ri = i a / M  are the points of partitioning of the interval [0, a ] 
into M parts. After application of the zonal method (the simplest of the projection methods [14 ]), we obtain the 
following system of nonlinear equations for determining ~o1, j = 1, M: 

M 
~oj=~OOj-  ~ G q f ( T ( ~ i ) ) ,  J =  I , M .  (5) 

i=1 

where the constants W0j, Gij are found by integration of the known functions. 
After determination of ~J, J = 1, M, we can represent the distribution of the modified temperature in the 

form of the series 

~p(r,z)=-~ ~ An (z) Jo (ynr ).  (6) 
a n=l  

where 
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f ~ 
A n (z) = n f rq (r) JO (Yn r) d r / P n  - ~ f ( r  (~oi)) A gn (z) ; 

0 i=I 

Ani = [ri J l  (Ynri) - r i -I  J! (ynr i - l )  ] /Pn  ; 

Pn = (~2n + h~) [Yn + h2 - (Yn - h2) exp ( -  2Yn/) ] ./2 (Yna) ; 

gn (z) = O'n + h2) exp ( -  Yn (l - z)) + (Yn - h2) exp ( -  Yn (l + z)) ; 

0 < Yl < ~2 < �9 �9 �9 are roots of the equation h l J o ( y a )  - yJl (ya)  ffi 0. 
However,  it is impossible  to solve sys tem (5) without f inding the constant  E, which was used for determining  

the coupling between the functions T and ~p. Returning to formula (1) for s we  see  that at the prescribed value of 

the mean  speed of mot ion  of  the melt  v the  determinat ion of E is reduced to f inding the mean- integral  value of the 

bath radius 

l 
r.  = f R (z) dz / (1  - Zo) (7) 

z 0 

over its depth H ,- 1 - z 0, which is also to be determined. This equation must be added to system (5) of the main 

equations of the problem. 
After solving system (5), (7) using Eq. (6), it is possible to determine the unknown stat ionary temperature 

field T(r,  z) ,  and from condition (4) to determine the position of the phase interface r - -  R( z ) .  The liquid bath 

volume, the mean-integral overheating of the melt over the entire volume of the bath, and  the overheating of the 

melt on its surface are calculated by the formulas 

W = ~ f 1~ 2 (z )  d z ,  A T  = - f f  7" (r, z )  r a r d z  - r m , 
z 0 z 0 0 

R/) 
2 ~ T (r, l) rdr - T m . 

A T I  - R 2 (l) o 

Now, we shall determine q(r), which is the stationary distribution of the power density on the heating 

surface in the case of scanning of a circle of radius 0 < R < a with an electron beam. Let Ol be the point of beam 

focusing in the plane z = l at distance 1 OO11 = R from the point O lying in the same plane on the crucible axis. 

Let us consider the point M ~ )  located at distance r from point O and at distance y ~ )  from point Ol ,  where fl -- 

/- O lOMq3) .  The value of the power dens i ty  at point M ~ )  is equal to qo exp [-krY2(fl)], where  y2~)  _- 

R 2 + r 2 - 2rR cos fl, 0 < fl < n (from the theorem of cosines). The density of the energy absorbed at each point 

that is located at distance r from point O for the time of passage of one full circle of radius R by the electron beam 

(for the period of rotation Tsc --- 2~R/vsc)  is determined by the integral 

Tsc / 2 
E ( r )  = 2q 0 f e x p { - k  r [r 2 + R  2 -  2 R r c o s ( V s c t / R  ) ] } d t =  

0 

2Rqo 
- exp [ -  k r (r 2 + R 2) 1 f exp (2krrR cos fl) df l .  

Vsc 0 

As q(r), it is natural to take the mean value of the density of energy absorbed per unit time 
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Fig. 1. Distr ibut ion of d imens ion less  temperature of  n iobium over heated  

surface at P - 133 kW; v - 0.3 m / s e c ;  b - 0.01 m (solid curves) and b - 0 .04  

m (dashed curves) for different values of  radius of  circular scanning  with a 

beam. R,  m: 1) R = 0, 2) 0.02, 3) 0.04, 4) 0.06. r, cm. 

Fig. 2. Cross-sect ions of surfaces of separat ion of liquid and  solid phases  r = 

R(z) Obtained for niobium for v = 0.3 m / s e c  (solid curves),  and  v = 0.005 

m / s e c  (dashed  curves) and  without al lowance for losses by  radiation and 

evaporation from heated surface (dashed-dotted curves) a t  P - 133 kW; b - 

0.03 m and different  values of the scanning radius R, m: 1) R - 0, 2) 0.03, 

3) 0.04, 4) 0.05. r, z, cm. 

3r 

q (r) = E (r) = q..__O0 exp [ -  k r (r 2 + R 2) ] f exp (2krrR cos fl) sfl.  
Tsc n 0 

(8) 

Using the mathemat ica l  model  developed, we carr ied out calculations of s t eady-s t a t e  the rmal  regimes in 

e lec t ron-beam melt ing of niobium in an autocrucible of d iameter  280 m m  (a = 0.14 m) for a level of the meta l  in 

the crucible l = 0.14 m and  electron beam power Po = 190 kW. According to [4 ], the efficiency of e lec t ron-beam 

heating is r / =  0.7, therefore  the magni tude  of the power absorbed  by  the metal  is taken to be equal to P -- r/P 0 = 

133 kW. 

For calculations we as sumed  [4, 15] that  T m =  2740 K; CVL = 0.2772.107 J / ( m 3 - K ) ;  Tw = 300 K; I L  = 

56.2716 W / ( m -  K); a ]  = a2  = 400 W / ( m  2. K); e = 0.4; cl --- 0.31102. 1018; c2 = 93,868.526 (we ob ta ined  the values 

of cl and  c2 on the basis of the exper imenta l  data  given in [51). The  piecewise continuous dependence  of the heat  

conduction coefficient on t empera tu re  was constructed using the data  of [15 ] on the the rma l  conductivi ty of 

niobium. We considered the cases of melt ing using a sys tem of electromagnetic mixing, when,  according to [4 ], v 

= 0.3 m/ sec ,  and  without forced mixing of the melt  (v = 0.005 m / s e c ) .  The  cor responding  values of E were 

de te rmined  in the process of problem solution and were equal to: a) from 8.34 to 13.11 at  b = 0.01 m and  from 

11.79 to 12.88 for b = 0.04 m at v = 0.3 m / s e c  for values of the scanning radius  within the range  of f rom 0 to 6 cm, 

i.e., they were close to the value ~--  10 [4 ]; and  b) from 1.44 to 2.00 at v = 0.005 m/sec ,  b --- 0.03 m for  the scanning 

radii 0 - 5  cm. 

To de termine  the error  arising in solving nonlinear  boundary-va lue  problem (4) by an app rox ima te  method,  

we calculated the magni tude  of overall losses of energy from the surfaces z = l, z = 0, and  r = a; for an exact  solution 

of the considered s ta t ionary  problem this magni tude should coincide with the magni tude  of the power P absorbed  

by the metal.  The  results  of calculations made  using the data  for niobium and  the above-given pa rame te r s  of the 

autocrucible for b = 0.03 m show that  the error  of determining the t empera ture  on the surfaces z = l, z = 0, and  r 
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Fig. 3. Dependences of volume of niobium liquid bath W. 10 -2,  cm 3, on the 
radius of circular scanning R, cm, obtained for v - 0.3 m/sec (solid curves), 
and v = 0.005 m/sec (dashed curves) and without allowance for losses by 
radiat ion and  evaporation from heated  surface (dashed-dotted curves) at b = 
0.01 m (numbering 1-3) b = 0.04 m (1'-3') and different values of absorbed 
power P, kW: 1, 1') P ffi 65; 2, 2') 100; 3, 3') 133. 

Fig. 4. Dependences of mean-integral overheating of niobium melt  throughout  

entire volume of bath AT, K (solid curves) and on its surface ATt, K (dashed  

curves) on scanning radius R, cm, for b = 0.01 m (number ing  1-3) and  b = 

0.04 m (1 ' -3 ' )  at different values of absorbed  power P,  kW: I ,  1') P = 65; 2, 

2') 100, 3, 3 ')  133. 

= a, which is calculated with respect to the magni tude of absorbed  power, is equal  to 1.36% at R = 0 and  up to 

0.165% at  R -- 0.03 m. 

T h e  behavior  of the tempera ture  curves T(r, D at different values of R (Fig. 1) reproduces  the behavior  of 

the corresponding functions q(r) determined  in the form of Eq. (8). Increasing the scanning and  focal spot radii  

leads to a more  uni form distr ibution of the absorbed  energy densi ty  over  the heat ing surface and,  consequent ly ,  

to a decrease  in the t empera tu re  gradient ,  as well as, natural ly,  to an  increase in the radius of the ba th  on its 

surface z = l. T h e  points of a t ta inment  of max imum tempera ture  recede from the center  r = 0 of the ba th  surface 

with an  increase  in R; in this case the t empera tu re  T(0,  D decreases ,  approach ing  the  value of the mel t ing  

t empera tu re  Tin; therefore,  in the case of an  ext reme increase in the scanning radius  (R > 0.06 m) the format ion  

of a unmel ted  zone in the central  part  of the bath surface is possible. T h e  t empera tu re  curves have an inflection 

point in passage  through the value equal to the melting temperature ;  this is due to the difference between the heat  

conduction coefficients of the melt  and solid metal.  

T h e  depth of the ba th  increases with an increase in R (Fig. 2), reaching a m a x i m u m  at a certain value of 

the scanning radius,  and  it decreases  with a fur ther  increase in R. Due to heat  losses f rom the hea ted  surface,  the 

depth and  radius of the ba th  decrease approximate ly  by a factor of two. In the case of melt ing with electromagnet ic  

mixing, the ba th  has the greates t  d iameter  not on the surface z = l, but somewhat  lower; thus,  the phase  interface 

has a small bend to the side of the axis r -- 0, which imparts  an ellipsoidal shape  to the ba th  observed in practice. 

The  presence of such a bend  is explained by the overest imation of thermal  losses over the densit ies of the energy  

absorbed  a t  the points of the intersection of the melt ing isotherm surface with the surface z = l, as a result  of which 

the t empera tu re  derivative along the axial coordinate z is negative near  the surface z = 1. In the two other  cases,  it 

is correspondingly  positive (v = 0.005 m/sec )  and  equal to zero ( / =  0). We note that  in the case of a l inear  problem 

(f = 0) the phase  interface r = R(z) is independent  of the effective heat  conduction coefficient. 
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The graphs given in Figs. 3 and 4 show that with an increase in the scanning radius, the volume of the 

bath increases, and the overheating decreases, which is quite explainable in view of the more uniform distribution 

of  the absorbed energy over the heating surface with an increase in R. However, in the case of melting with 

electromagnetic mixing, an extreme increase in the scanning radius leads to a decrease in the volume, and at each 

value of "b" the function W(R) has a point of maximum attainment. Comparing the W(R) curves obtained for v 

0 . 0 0 5  m/sec and v = 0.3 m/sec, we see that the use of electromagnetic mixing allows one to increase the volume 
7 . 5 - 2 0  times at R = 0 ( d e p e n d i n g  on  the value of  b) a n d ,  for e x a m p l e ,  2 . 8 -  3.5 times at R - 5 cm. Applying 

circular scanning of the beam, we can increase the volume of the bath (compared to axisymmetric heating by a 

stationary beam) by a factor of twelve at b = 1 cm and by 15% at b = 4 cm. Due to heat losses from the heated 

surface the volume of the liquid bath decreases 2 .5-4  times at absorbed power P = 65-133 kW. The overheating 

of the melt on the surface of the bath exceeds the mean-integral overheating throughout the entire volume of the 
bath by more than two times (Fig. 4). 

To check the correspondence of the mathematical model developed to actual thermal regimes of EBAM, we 

compared the results of calculation with known experimental data [4 ]. In experimental melting of niobium in an 

autocrucible 280 mm in diameter with application of electromagnetic mixing at a maximum electron-beam power 
P 0 "  190 kW the mass of the discharged liquid metal varied from 8.4 kg to 8.7 kg, which, being converted to volume, 

amounts to 976.7 cm3-1011.6 cm 3. This band of values is intersected by the W(R) curves that correspond to the 

value P = 133 kW (Fig. 3) for a scanning radius of from 3 to 5 cm. 

According to [4 ], in the case of EBAM without forced mixing the depth of the bath of zirconium in a 250 

mm-diameter crucible is 24-28 mm. According to our calculations carried out for zirconium at a = 0.125 m; l -- 0.1 

m; al  ~ 400 W/(m2.K);  a2 ~ 50 W/(m2.K);  v ~ 0.005 m/sec; b = 0.03 m; R = 0.35 m and values of 2 and Cvi. 

taken from [4 ], the depth of the bath varies from 20 to 27.2 mm with a change in the absorbed power of from P 

- 52.5 kW to P = 105 kW. 

Thus, the results obtained by calculation find quite satisfactory experimental confirmation; therefore, the 

mathemtical model developed can be used in technological investigations of EBAM. 

N O T A T I O N  

r, z, radial and axial coordinates; a, b, radii of crucible and focal spot; l, height of metal in crucible; R, 

scanning radius; z0, point of intersection of phase interface with the 0z axis; T(r, z), temperature field of metal; 

Tin, melting temperature; Tw, temperature of water in cooling system; r = R(z), equation of the surface of separation 

of liquid and solid phases; aL, coefficient of molecular heat conduction of liquid metal; 2e, coefficient of effective 

heat conduction; CVL, heat capacity of unit volume of liquid metal; v, bath-mean speed of melt motion; r., mean- 

integral radius of bath; P0, power of electron-beam heating; P, power absorbed by metal; q(r), surface distribution 

of power density P; q0, power density at point of beam focusing; a l ,  a2, coefficients of heat transfer from side and 
bottom surfaces of crucible; e, emissivity of heated surface of metal; a, Stefan-Boltzmann constant; r/(T - Tm), 

Heaviside unit function; hi = c t i / ~ t s i ;  2st, mean values of heat conduction coefficient on cooled surfaces, i = 1, 2; kr 

= 2b -2, coefficient of concentration of heat source in radial direction; Vsc, speed of beam scanning; W, volume of 

liquid bath; AT, ATI, mean-integral overheating of melt over entire volume of bath and on its surface; Jo, J l ,  Bessel 
functions of the first kind of zero and first order. 
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